
Add to Cart
GH 20*25 M3 Oldham Type Shaft Coupling For Mechanism Connection
Products Parameters
Production Datasheet
model parameter | common bore diameter d1,d2 | ΦD | L | LF | LP | F | M | tightening screw torque (N.M) |
GH-16X18 | 4,5,6,6.35,7,8 | 16 | 18 | 7.1 | 11.6 | 3.55 | M3 | 0.7 |
GH-20X25 | 5,6,6.35,7,8,9,9.525 | 20 | 25 | 9.1 | 12.7 | 4.55 | M4 | 1.7 |
GH-25X28 | 5,6,6.35,8,9,9.525,10,11,12,14 | 25 | 28 | 11.7 | 16.65 | 5.58 | M4 | 1.7 |
GH-32x33 | 5,6,8,9,9.525,10,11,12,12.7,14,15,16 | 32 | 33 | 14 | 19.5 | 7 | M4 | 1.7 |
GH-40X35 | 8,9,9.525,10,11,12,12.7,14,14,16,17,18,19,20 | 40 | 35 | 15.5 | 18.4 | 7.75 | M4 | 1.7 |
GH-45X46 | 8,9,9.525,10,11,12.7,14,15,16,17,18,19,20,22 | 45 | 46 | 21.5 | 18.4 | 9 | M5 | 4 |
GH-50X38 | 10,12,12.7,14,15,16,17,18,19,20,22,24,25 | 50 | 38 | 16.5 | 15 | 8.25 | M5 | 4 |
GH-55X57 | 10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 | 55 | 57 | 27 | 17.5 | 10.5 | M5 | 4 |
GH-63X47 | 14,15,16,17,18,19,20,22,24,25,28,30,32 | 63 | 47 | 21 | 17.5 | 10.5 | M6 | 8.4 |
GH-70X77 | 16,17,18,19,20,22,24,25,28,30,32,38,40 | 70 | 77 | 36.5 | 25 | 13.5 | M8 | 10.5 |
model parameter | Rated torque (N.M)* | allowable eccentricity (mm)* | allowable deflection angle (°)* | allowable axial deviation (mm)* | maximum speed rpm | static torsional stiffness (N.M/rad) | moment of inertia (Kg.M2) | Material of shaft sleeve | Material of shrapnel | surface treatment | weight (g) |
GH-16X18 | 0.7 | 0.8 | 3 | ±0.2 | 9000 | 30 | 3.3x10-7 | High strength aluminum alloy | P A 6 6 | Anodizing treatment | 6 |
GH-20X25 | 1.2 | 1.2 | 3 | ±0.2 | 7000 | 58 | 1.1x10-6 | 18 | |||
GH-25X28 | 2 | 1.6 | 3 | ±0.2 | 6000 | 130 | 3.1x10-6 | 25 | |||
GH-32x33 | 4.5 | 2 | 3 | ±0.2 | 4800 | 270 | 9.6x10-6 | 44 | |||
GH-40X35 | 9 | 2.4 | 3 | ±0.2 | 3600 | 520 | 2.3x10-5 | 81 | |||
GH-45X46 | 12 | 2.8 | 3 | ±0.2 | 3500 | 560 | 3.8x10-5 | 136 | |||
GH-50X38 | 19 | 2.6 | 3 | ±0.2 | 3000 | 800 | 1.8x10-4 | 142 | |||
GH-55X57 | 22 | 3.3 | 3 | ±0.2 | 2800 | 795 | 8.0x10-4 | 255 | |||
GH-63X47 | 19 | 3 | 3 | ±0.2 | 2500 | 1200 | 8.3x10-4 | 320 | |||
GH-70X77 | 56 | 3.8 | 3 | ±0.2 | 2500 | 1260 | 3.9x10-4 | 445 |
Products Introduction
Working principle of cross slider coupling: the two shafts are aligned by reaming holes and bolts, and the torque is transmitted by the compression and shear of the bolt rod; The shoulder on one coupling half is aligned with the groove on the other coupling half. The bolts connecting the two half couplings can be ordinary bolts of grade and B, and the torque is transmitted by the friction moment of the joint surface of the two half couplings. Generally, 45 steel is used. After surface heat treatment, its hardness is improved to a certain extent. However, some manufacturers use Q275 steel separately, so heat treatment is not required.
Oldham type shaft coupling are designed to clamp evenly around the shaft and provide greater retention than fixed screw couplings without damaging shaft. Then tighten the clamping screws to secure. These are Oldham couplings
First of all, its shape is light and convenient to install, which saves time for the processing and production of enterprises. Secondly, it is resistant to oil corrosion and can be electrically insulated. Different slider elastomers are available. The sliding between the shaft sleeve and the intermediate piece can allow large radial and angular deviations. The special bump design in the middle can play a supporting role and allow large angular deviations without bending moment, so as to minimize the axial load.
Secondly, it has the advantages of simple structure, wide size range, small moment of inertia, convenient use and convenient visual inspection. Super oil corrosion resistance and electrical insulation minimize the axial load caused by deviation. The sliding between the shaft sleeve and the middle can allow large radial and angular deviation.