
Add to Cart
GHC 32X45 Flexible Oldham Clamping Shaft Cross Slider Coupling For Mechanism
Products Parameters
Production Drawings
Production Datasheet
model parameter | common bore diameter d1,d2 | ΦD | L | LF | LP | F | M | tightening screw torque (N.M) |
GHC-16X21 | 4,5,6,6.35 | 16 | 21 | 8.6 | 11.6 | 2.5 | M2.5 | 1 |
GHC-16X30 | 4,5,6,6.35 | 16 | 30 | 13.1 | 11.6 | 3 | M2.5 | 1 |
GHC-20X22 | 5,6,6.35,7,8 | 20 | 22 | 8.6 | 12.7 | 2.5 | M2.5 | 1 |
GHC-20x33 | 5,6,6.35,7,8 | 20 | 33 | 14.1 | 12.7 | 3 | M2.5 | 1 |
GHC-25x28 | 5,6,6.35,8,9,9.525,10,11,12 | 25 | 28 | 11.7 | 16.65 | 3 | M3 | 1.5 |
GHC-25X39 | 5,6,6.35,8,9,9.525,10,11,12 | 25 | 39 | 17.2 | 16.65 | 4.2 | M3 | 1.5 |
GHC-32X33 | 5,6,8,9,9.525,10,11,12.12.7,14,15,16 | 32 | 33 | 14 | 19.5 | 3 | M4 | 2.5 |
GHC-32X45 | 5,6,8,9,9.525,10,11,12,12.7,14,15,16 | 32 | 45 | 20 | 19.5 | 4.5 | M4 | 2.5 |
GHC-40X50 | 8,9,9.525,10,11,12,14,15,16,17,18,19 | 40 | 50 | 23 | 18.4 | 7 | M5 | 7 |
GHC-45X46 | 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 | 45 | 46 | 21 | 18.4 | 7 | M5 | 7 |
GHC-50X53 | 10,11,12.7,14,15,16,17,18,19,20,22,24 | 50 | 53 | 24 | 15 | 7.5 | M6 | 12 |
GHC-50X58 | 10,11,12.7,14,15,16,17,18,19,20,22,24 | 50 | 58 | 26.5 | 17.5 | 8 | M6 | 12 |
GHC-55X57 | 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 | 55 | 57 | 26 | 17.5 | 7.8 | M6 | 12 |
GHC-63X71 | 14,15,16,17,18,19,20,22,24,25,28,30,32 | 63 | 71 | 33 | 24 | 10 | M8 | 20 |
GHC-70X77 | 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 | 70 | 77 | 29.5 | 25 | 12 | M8 | 20 |
model parameter | Rated torque (N.M)* | allowable eccentricity (mm)* | allowable deflection angle (°)* | allowable axial deviation (mm)* | maximum speed rpm | static torsional stiffness (N.M/rad) | moment of inertia (Kg.M2) | Material of shaft sleeve | Material of shrapnel | surface treatment | weight (g) |
GHC-16X21 | 0.7 | 0.8 | 3 | ±0.2 | 8500 | 30 | 5.5x10-7 | High strength aluminum alloy | P A 6 6 | Anodizing treatment | 8 |
GHC-16X30 | 0.7 | 0.8 | 3 | ±0.2 | 9000 | 30 | 5.9x10-7 | 12 | |||
GHC-20X22 | 1.2 | 1.2 | 3 | ±0.2 | 6500 | 58 | 1.3x10-6 | 13 | |||
GHC-20x33 | 1.2 | 1.2 | 3 | ±0.2 | 7000 | 58 | 1.5x10-6 | 19 | |||
GHC-25X28 | 2 | 1.6 | 3 | ±0.2 | 5500 | 130 | 4.0x10-6 | 24 | |||
GHC-25X39 | 22 | 1.6 | 3 | ±0.2 | 6000 | 130 | 4.5x10-6 | 35 | |||
GHC-32X33 | 4.5 | 2 | 3 | ±0.2 | 4500 | 270 | 1.3x10-5 | 48 | |||
GHC-32X45 | 4.5 | 2 | 3 | ±0.2 | 4800 | 270 | 1.5x10-5 | 67 | |||
GHC-40X50 | 9 | 2.4 | 3 | ±0.2 | 3600 | 520 | 4.2x10-5 | 114 | |||
GHC-45X46 | 12 | 2.5 | 3 | ±0.2 | 3500 | 800 | 4.5x10-5 | 140 | |||
GHC-50X53 | 19 | 2.6 | 3 | ±0.2 | 3000 | 800 | 1.0x10-4 | 190 | |||
GHC-50X58 | 19 | 3 | 3 | ±0.2 | 3000 | 800 | 1.1x10-4 | 215 | |||
GHC-55X57 | 25 | 3.2 | 3 | ±0.2 | 3000 | 900 | 1.3x10-5 | 260 | |||
GHC-63X71 | 33 | 3 | 3 | ±0.2 | 2550 | 1200 | 3.5x10-4 | 455 | |||
GHC-70X77 | 56 | 3.5 | 3 | ±0.2 | 2500 | 1260 | 4.1x10-5 | 520 |
Products Introduction
The Oldham type shaft coupling are designed to clamp evenly around the shaft and provide greater retention than fixed screw couplings without damaging shaft. Then tighten the clamping screws to secure. These are Oldham couplings. We are the manufactures of producing all kinds of shaft coupling. Customized couplings are also acceptable.
its shape is light and convenient to install, which saves time for the processing and production of enterprises. Secondly, it is resistant to oil corrosion and can be electrically insulated. Different slider elastomers are available. The sliding between the shaft sleeve and the intermediate piece can allow large radial and angular deviations. The special bump design in the middle can play a supporting role and allow large angular deviations without bending moment, so as to minimize the axial load
Working principle of cross slider coupling: the two shafts are aligned by reaming holes and bolts, and the torque is transmitted by the compression and shear of the bolt rod; The shoulder on one coupling half is aligned with the groove on the other coupling half. The bolts connecting the two half couplings can be ordinary bolts of grade and B, and the torque is transmitted by the friction moment of the joint surface of the two half couplings. Generally, 45 steel is used. After surface heat treatment, its hardness is improved to a certain extent. However, some manufacturers use Q275 steel separately, so heat treatment is not required. The two couplings and the intermediate plate are combined. Although there is no relative rotation, the driving shaft runs at the same speed as the driven shaft to ensure the operation efficiency. Cross slider coupling is suitable for many occasions, such as tachometer, encoder, screw rod and industrial machinery
Welcome to contact us to more informations!